Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 81
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Virology ; 595: 110066, 2024 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-38574415

RESUMO

Avian influenza virus (AIV) is a constant threat to animal health with recent global outbreaks resulting in the death of hundreds of millions of birds with spillover into mammals. Myxovirus-resistance (Mx) proteins are key mediators of the antiviral response that block virus replication. Mouse (Mu) Mx (Mx1) is a strong antiviral protein that interacts with the viral nucleoprotein to inhibit polymerase function. The ability of avian Mx1 to inhibit AIV is unclear. In these studies, Mu Mx1 was stably introduced into chicken DF1 cells to enhance the immune response against AIV. Following infection, titers of AIV were significantly decreased in cells expressing Mu Mx1. In addition, considerably less cytopathic effect (CPE) and matrix protein staining was observed in gene-edited cells expressing Mu Mx1, suggesting Mu Mx1 is broadly effective against multiple AIV subtypes. This work provides foundational studies for use of gene-editing to enhance innate disease resistance against AIV.

2.
Virol J ; 20(1): 298, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-38102683

RESUMO

BACKGROUND: Avian influenza is a highly contagious, agriculturally relevant disease that can severely affect the poultry industry and food supply. Eurasian-origin H5Nx highly pathogenic avian influenza viruses (HPAIV) (clade 2.3.4.4) have been circulating globally in wild birds with spill over into commercial poultry operations. The negative impact to commercial poultry renewed interest in the development of vaccines against these viruses to control outbreaks in the U.S. METHODS: The efficacy of three recombinant H5 vaccines delivered in ovo or day of age were evaluated in commercial broilers challenged with the 2015 U.S. H5N2 clade 2.3.4.4c HPAIV. The recombinant vaccines included an alphavirus RNA particle vaccine (RP-H5), an inactivated reverse genetics-derived (RG-H5) and recombinant HVT vaccine (rHVT-AI) expressing H5 hemagglutinin (HA) genes. In the first experiment, in ovo vaccination with RP-H5 or rHVT-AI was tested against HPAI challenge at 3 or 6 weeks of age. In a second experiment, broilers were vaccinated at 1 day of age with a dose of either 107 or 108 RP-H5, or RG-H5 (512 HA units (HAU) per dose). RESULTS: In experiment one, the RP-H5 provided no protection following in ovo application, and shedding titers were similar to sham vaccinated birds. However, when the RP-H5 was delivered in ovo with a boost at 3 weeks, 95% protection was demonstrated at 6 weeks of age. The rHVT-AI vaccine demonstrated 95 and 100% protection at 3 and 6 weeks of age, respectively, of challenged broilers with reduced virus shedding compared to sham vaccinated birds. Finally, when the RP-H5 and rHVT vaccines were co-administered at one day of age, 95% protection was demonstrated with challenge at either 3 or 6 weeks age. In the second experiment, the highest protection (92%) was observed in the 108 RP-H5 vaccinated group. Significant reductions (p < 0.05) in virus shedding were observed in groups of vaccinated birds that were protected from challenge. The RG-H5 provided 62% protection from challenge. In all groups of surviving birds, antibody titers increased following challenge. CONCLUSIONS: Overall, these results demonstrated several strategies that could be considered to protected broiler chickens during a H5 HPAI challenge.


Assuntos
Vírus da Influenza A Subtipo H5N2 , Vírus da Influenza A , Vacinas contra Influenza , Influenza Aviária , Animais , Galinhas , Vírus da Influenza A Subtipo H5N2/genética , Vacinas Sintéticas , Glicoproteínas de Hemaglutininação de Vírus da Influenza/genética
3.
Viruses ; 15(11)2023 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-38005949

RESUMO

Highly pathogenic avian influenza viruses (HPAIVs) of subtype H5 of the Gs/GD/96 lineage remain a major threat to poultry due to endemicity in wild birds. H5N1 HPAIVs from this lineage were detected in 2021 in the United States (U.S.) and since then have infected many wild and domestic birds. We evaluated the pathobiology of an early U.S. H5N1 HPAIV (clade 2.3.4.4b, 2021) and two H5N8 HPAIVs from previous outbreaks in the U.S. (clade 2.3.4.4c, 2014) and Europe (clade 2.3.4.4b, 2016) in chickens and turkeys. Differences in clinical signs, mean death times (MDTs), and virus transmissibility were found between chickens and turkeys. The mean bird infective dose (BID50) of the 2021 H5N1 virus was approximately 2.6 log10 50% embryo infective dose (EID50) in chickens and 2.2 log10 EID50 in turkeys, and the virus transmitted to contact-exposed turkeys but not chickens. The BID50 for the 2016 H5N8 virus was also slightly different in chickens and turkeys (4.2 and 4.7 log10 EID50, respectively); however, the BID50 for the 2014 H5N8 virus was higher for chickens than turkeys (3.9 and ~0.9 log10 EID50, respectively). With all viruses, turkeys took longer to die (MDTs of 2.6-8.2 days for turkeys and 1-4 days for chickens), which increased the virus shedding period and facilitated transmission to contacts.


Assuntos
Virus da Influenza A Subtipo H5N1 , Vírus da Influenza A Subtipo H5N8 , Vírus da Influenza A , Influenza Aviária , Doenças das Aves Domésticas , Animais , Estados Unidos/epidemiologia , Vírus da Influenza A Subtipo H5N8/genética , Galinhas , Virus da Influenza A Subtipo H5N1/genética , Perus , Virulência , Vírus da Influenza A/genética , Animais Selvagens
4.
Front Vet Sci ; 10: 1250952, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37720472

RESUMO

Avian influenza viruses (AIVs) are naturally found in wild birds, primarily in migratory waterfowl. Although species barriers exist, many AIVs have demonstrated the ability to jump from bird species to mammalian species. A key contributor to this jump is the adaption of the viral RNA polymerase complex to a new host for efficient replication of its RNA genome. The AIV PB2 gene appears to be essential in this conversion, as key residues have been discovered at amino acid position 627 that interact with the host cellular protein, acidic nuclear phosphoprotein 32 family member A (ANP32A). In particular, the conversion of glutamic acid (E) to lysine (K) is frequently observed at this position following isolation in mammals. The focus of this report was to compare the distribution of PB2 627 residues from different lineages and origins of H5 AIV, determine the prevalence between historical and contemporary sequences, and investigate the ratio of amino acids in avian vs. mammalian AIV sequences. Results demonstrate a low prevalence of E627K in H5 non-Goose/Guangdong/1996-lineage (Gs/GD) AIV samples, with a low number of mammalian sequences in general. In contrast, the H5-Gs/GD lineage sequences had an increased prevalence of the E627K mutation and contained more mammalian sequences. An approximate 40% conversion of E to K was observed in human sequences of H5 AIV, suggesting a non-exclusive requirement. Taken together, these results expand our understanding of the distribution of these residues within different subtypes of AIV and aid in our knowledge of PB2 mutations in different species.

5.
Virology ; 586: 122-129, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37542819

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is believed to have a zoonotic origin with bats suspected as a natural host. In this work, we individually express the ACE2 of seven bat species including, little brown, great roundleaf, Pearson's horseshoe, greater horseshoe, Brazilian free-tailed, Egyptian rousette, and Chinese rufous horseshoe in DF1 cells and determine their ability to support attachment and replication of SARS-CoV-2 viruses. We demonstrate that the ACE2 receptor of all seven species made DF1 cells permissible to SARS-CoV-2. The level of virus replication differed between bat species and variants tested. The Wuhan lineage SARS-CoV-2 virus replicated to higher titers than either variant virus tested. All viruses tested grew to higher titers in cells expressing the human ACE2 gene compared to a bat ACE2. This study provides a practical in vitromethod for further testing of animal species for potential susceptibility to current and emerging SARS-CoV-2 viruses.


Assuntos
COVID-19 , Quirópteros , Animais , Humanos , SARS-CoV-2/genética , Enzima de Conversão de Angiotensina 2/genética , Receptores Virais/genética , Internalização do Vírus , Glicoproteína da Espícula de Coronavírus/genética
6.
Virology ; 569: 1-12, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35217403

RESUMO

The SARS-CoV-2 (SARS-CoV-2) virus has caused a worldwide pandemic because of the virus's ability to transmit efficiently human-to-human. A key determinant of infection is the attachment of the viral spike protein to the host receptor angiotensin-converting enzyme 2 (ACE2). Because of the presumed zoonotic origin of SARS-CoV-2, there is no practical way to assess the susceptibility of every species to SARS-CoV-2 by direct challenge studies. In an effort to have a better predictive model of animal host susceptibility to SARS-CoV-2, we expressed the ACE2 and/or transmembrane serine protease 2 (TMPRSS2) genes from humans and other animal species in the avian fibroblast cell line, DF1, that is not permissive to infection. We demonstrated that expression of both human ACE2 and TMPRSS2 genes is necessary to support SARS-CoV-2 infection and replication in DF1 and a non-permissive sub-lineage of MDCK cells. Titers of SARS-CoV-2 in these cell lines were comparable to those observed in control Vero cells. To further test the model, we developed seven additional transgenic cell lines expressing the ACE2 and TMPRSS2 derived from Felis catus (cat), Equus caballus (horse), Sus domesticus (pig), Capra hircus (goat), Mesocricetus auratus (Golden hamster), Myotis lucifugus (Little Brown bat) and Hipposideros armiger (Great Roundleaf bat) in DF1 cells. Results demonstrate permissive replication of SARS-CoV-2 in cat, Golden hamster, and goat species, but not pig or horse, which correlated with the results of reported challenge studies. Cells expressing genes from either bat species tested demonstrated temporal replication of SARS-CoV-2 that peaked early and was not sustained. The development of this cell culture model allows for more efficient testing of the potential susceptibility of many different animal species for SARS-CoV-2 and emerging variant viruses.


Assuntos
COVID-19 , Quirópteros , Enzima de Conversão de Angiotensina 2/genética , Animais , Gatos , Quirópteros/metabolismo , Chlorocebus aethiops , Cavalos , SARS-CoV-2/genética , Glicoproteína da Espícula de Coronavírus/genética , Glicoproteína da Espícula de Coronavírus/metabolismo , Suínos , Células Vero
7.
Avian Dis ; 66(4): 479-485, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36715482

RESUMO

The Reoviridae family represents the largest family of double-stranded RNA viruses, and members have been isolated from a wide range of mammals, birds, reptiles, fishes, insects, and plants. Orthoreoviruses, one of the 15 recognized genera in the Reoviridae family, can infect humans and nearly all mammals and birds. Genomic characterization of reoviruses has not been adopted on a large scale because of the complexity of obtaining sequences for all 10 segments. In this study, we develop a time-efficient and practical method to enrich reovirus sequencing reads from isolates that allows for full-genome recovery using a single-primer amplification method coupled with next-generation sequencing. We refer to this protocol as reovirus-single-primer amplification (R-SPA). Our results demonstrate that most of the genes are covered with at least 500 reads per base space. Furthermore, R-SPA covers both the 5' and 3' ends of each reovirus genes. In summary, this study presents a universal and fast amplification protocol that yields sufficient double-stranded cDNA and facilitates and expedites the whole-genome sequencing of reoviruses.


Protocolo universal de amplificación con un iniciador único para realizar la secuenciación del genoma completo de orthoreovirus aviares con ARN de doble cadena y segmentados La familia Reoviridae representa la familia más grande de virus de ARN de doble cadena y se han aislado miembros de una amplia variedad de mamíferos, aves, reptiles, peces, insectos y plantas. El género Orthoreovirus, uno de los 15 géneros reconocidos en la familia Reoviridae, pueden infectar a humanos y a casi todos los mamíferos y aves. La caracterización genómica de los reovirus no se ha adoptado a gran escala debido a la complejidad de obtener secuencias para los 10 segmentos. En este estudio, desarrollamos un método práctico y eficiente para enriquecer las lecturas de secuenciación de reovirus a partir de aislamientos que permite la recuperación del genoma completo utilizando un método de amplificación con un iniciador único junto con la secuenciación de próxima generación. Nos referimos a este protocolo como amplificación de un solo iniciador de reovirus (R-SPA). Estos resultados demuestran que la mayoría de los genes están cubiertos con al menos 500 lecturas por espacio base. Además, el método R-SPA cubre los extremos 5' y 3' de cada gene de reovirus. En resumen, este estudio presenta un protocolo de amplificación rápido y universal que produce suficiente ADN complementario de doble cadena y facilita y acelera la secuenciación del genoma completo de los reovirus.


Assuntos
Orthoreovirus Aviário , Orthoreovirus , Doenças das Aves Domésticas , Reoviridae , Humanos , Animais , Genoma Viral , RNA de Cadeia Dupla/genética , Doenças das Aves Domésticas/genética , Reoviridae/genética , Orthoreovirus/genética , Orthoreovirus Aviário/genética , Mamíferos/genética
8.
Microorganisms ; 9(12)2021 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-34946202

RESUMO

High-throughput sequencing approaches offer the possibility to better understand the complex microbial communities associated with animals. Viral metagenomics has facilitated the discovery and identification of many known and unknown viruses that inhabit mucosal surfaces of the body and has extended our knowledge related to virus diversity. We used metagenomics sequencing of chicken buccal swab samples and identified various small DNA viruses with circular genome organization. Out of 134 putative circular viral-like circular genome sequences, 70 are cressdnaviruses and 26 are microviruses, whilst the remaining 38 most probably represent sub-genomic molecules. The cressdnaviruses found in this study belong to the Circoviridae, Genomoviridae and Smacoviridae families as well as previously described CRESS1 and naryavirus groups. Among these, genomoviruses and smacoviruses were the most prevalent across the samples. Interestingly, we also identified 26 bacteriophages that belong to the Microviridae family, whose members are known to infect enterobacteria.

9.
Viruses ; 13(9)2021 09 16.
Artigo em Inglês | MEDLINE | ID: mdl-34578433

RESUMO

An outbreak caused by H7N3 low pathogenicity avian influenza virus (LPAIV) occurred in commercial turkey farms in the states of North Carolina (NC) and South Carolina (SC), United States in March of 2020. Subsequently, H7N3 high pathogenicity avian influenza virus (HPAIV) was detected on a turkey farm in SC. The infectivity, transmissibility, and pathogenicity of the H7N3 HPAIV and two LPAIV isolates, including one with a deletion in the neuraminidase (NA) protein stalk, were studied in turkeys and chickens. High infectivity [<2 log10 50% bird infectious dose (BID50)] and transmission to birds exposed by direct contact were observed with the HPAIV in turkeys. In contrast, the HPAIV dose to infect chickens was higher than for turkeys (3.7 log10 BID50), and no transmission was observed. Similarly, higher infectivity (<2-2.5 log10 BID50) and transmissibility were observed with the H7N3 LPAIVs in turkeys compared to chickens, which required higher virus doses to become infected (5.4-5.7 log10 BID50). The LPAIV with the NA stalk deletion was more infectious in turkeys but did not have enhanced infectivity in chickens. These results show clear differences in the pathobiology of AIVs in turkeys and chickens and corroborate the high susceptibility of turkeys to both LPAIV and HPAIV infections.


Assuntos
Galinhas/virologia , Vírus da Influenza A Subtipo H7N3/patogenicidade , Influenza Aviária/virologia , Doenças das Aves Domésticas/virologia , Perus/virologia , Animais , Surtos de Doenças/veterinária , Genoma Viral , Vírus da Influenza A Subtipo H7N3/genética , Vírus da Influenza A Subtipo H7N3/isolamento & purificação , Influenza Aviária/epidemiologia , Influenza Aviária/transmissão , North Carolina/epidemiologia , Filogenia , Doenças das Aves Domésticas/epidemiologia , Doenças das Aves Domésticas/transmissão , South Carolina/epidemiologia , Carga Viral , Virulência , Eliminação de Partículas Virais
10.
Viruses ; 13(6)2021 06 18.
Artigo em Inglês | MEDLINE | ID: mdl-34207098

RESUMO

In March 2017, highly pathogenic (HP) and low pathogenic (LP) avian influenza virus (AIV) subtype H7N9 were detected from poultry farms and backyard birds in several states in the southeast United States. Because interspecies transmission is a known mechanism for evolution of AIVs, we sought to characterize infection and transmission of a domestic duck-origin H7N9 LPAIV in chickens and genetically compare the viruses replicating in the chickens to the original H7N9 clinical field samples used as inoculum. The results of the experimental infection demonstrated virus replication and transmission in chickens, with overt clinical signs of disease and shedding through both oral and cloacal routes. Unexpectedly, higher levels of virus shedding were observed in some cloacal swabs. Next generation sequencing (NGS) analysis identified numerous non-synonymous mutations at the consensus level in the polymerase genes (i.e., PA, PB1, and PB2) and the hemagglutinin (HA) receptor binding site in viruses recovered from chickens, indicating possible virus adaptation in the new host. For comparison, NGS analysis of clinical samples obtained from duck specimen collected during the outbreak indicated three polymorphic sides in the M1 segment and a minor population of viruses carrying the D139N (21.4%) substitution in the NS1 segment. Interestingly, at consensus level, A/duck/Alabama (H7N9) had isoleucine at position 105 in NP protein, similar to HPAIV (H7N9) but not to LPAIV (H7N9) isolated from the same 2017 influenza outbreak in the US. Taken together, this work demonstrates that the H7N9 viruses could readily jump between avian species, which may have contributed to the evolution of the virus and its spread in the region.


Assuntos
Galinhas/virologia , Surtos de Doenças/veterinária , Patos/virologia , Subtipo H7N9 do Vírus da Influenza A/genética , Subtipo H7N9 do Vírus da Influenza A/fisiologia , Influenza Aviária/epidemiologia , Mutação , Polimorfismo Genético , Adaptação Fisiológica/genética , Animais , Cloaca/virologia , Subtipo H7N9 do Vírus da Influenza A/patogenicidade , Influenza Aviária/transmissão , Influenza Aviária/virologia , Doenças das Aves Domésticas/virologia , Estados Unidos/epidemiologia , Virulência , Replicação Viral
11.
Microbiol Resour Announc ; 9(19)2020 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-32381608

RESUMO

Avian metapneumoviruses (aMPVs), which have been reported in many countries, cause acute upper respiratory tract disease in chickens and turkeys. Using next-generation sequencing, we report here the complete genome sequence of an aMPV subtype B strain that was isolated from a turkey in Hungary in 1989.

12.
Methods Mol Biol ; 2123: 227-245, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32170692

RESUMO

Cellular immune responses, through both T and B cells, are critical to understanding the role and regulation of lymphocytes following viral infection, as well as defining responses to vaccination. T cells play a critical role in adaptive immunity, including pathogen elimination through the engagement of CD4 and CD8 receptors, which trigger signaling mechanisms. B cells contribute to generating antibodies following exposure to foreign pathogens through interactions with CD4+ lymphocytes. While these different cell types have distinctly different modes of action in terms of contributions to protection (cytotoxic versus antibody mediated), they account for the majority of adaptive immunity induced following infection or vaccination. While the ability to measure cell-mediated immunity (CMI) has steadily improved, there is much to learn with regard to their contribution to the protection of birds against diseases induced by avian influenza virus. The rapidly increasing knowledge of genomic avian sequences, along with the increasing availability of monoclonal antibodies detecting avian cell-associated antigen markers, has made techniques to measure CMI more specific and informative for researchers.


Assuntos
Galinhas/imunologia , Galinhas/virologia , Imunidade Celular , Técnicas Imunológicas/métodos , Vírus da Influenza A/imunologia , Influenza Aviária/imunologia , Influenza Aviária/virologia , Animais , Linfócitos B/imunologia , Citotoxicidade Imunológica , Imunoglobulina G/metabolismo , Imunofenotipagem
13.
Avian Dis ; 63(1): 90-96, 2019 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-31251524

RESUMO

Highly pathogenic avian influenza (HPAI) clade 2.3.4.4 viruses from the H5 goose/Guangdong lineage caused a major outbreak in poultry in the United States in 2015. Although the outbreak was controlled, vaccines were considered as an alternative control method, and new vaccines were approved and purchased by the U.S. Department of Agriculture National Veterinary Stockpile for emergency use. In this study, we evaluated the efficacy of two of these vaccines in protecting Pekin ducks (Anas platyrhynchos var. domestica) against challenge with a H5N2 HPAI poultry isolate. A recombinant alphavirus-based vaccine and an inactivated adjuvanted reverse genetics vaccine, both expressing the hemagglutinin gene of a U.S. H5 clade 2.3.4.4 isolate (A/Gyrfalcon/Washington/41088-6/2014 H5N8), were used to immunize the ducks. The vaccines were given either as single vaccination at 2 days of age or in a prime-boost strategy at 2 and 15 days of age. At 32 days of age, all ducks were challenged with A/turkey/Minnesota/12582/15 H5N2 HPAI virus clade 2.3.4.4. All ducks from the nonvaccinated challenge control group became infected and shed virus; one duck in this group presented mild ataxia, and a second duck died. No mortality or clinical signs were observed in vaccinated and challenged ducks, with the exception of one duck presenting with mild ataxia. Both vaccines, regardless of the vaccination strategy used, were immunogenic in ducks and reduced or prevented virus shedding after challenge. In conclusion, good protection against H5Nx infection was achieved in ducks vaccinated with the vaccines examined, which were homologous to the challenge virus, with prime-boost strategies conferring the best protection against infection.


Eficacia de dos vacunas con licencia contra influenza aviar H5 frente a un desafío con un virus de la influenza aviar altamente patógeno H5N2 en patos domésticos de los Estados Unidos del año 2015 y del clado 2015 2.3.4.4. Los virus de la influenza aviar altamente patógena (HPAI) 2.3.4.4 del linaje H5 ganso/Guangdong causaron un brote importante en la avicultura de los Estados Unidos en el año 2015. Aunque el brote fue controlado, las vacunas se consideraron un método de control alternativo y nuevas vacunas fueron aprobadas y adquiridas por la Reserva Nacional Veterinaria del Departamento de Agricultura de los Estados Unidos para uso en caso de emergencia. En este estudio, se evaluó la eficacia de dos de estas vacunas en la protección de patos Pekin frente al desafío con un aislamiento aviar H5N2 de alta patogenicidad. Se utilizaron una vacuna recombinante basada en alfavirus y una vacuna generada por genética inversa, inactivada y con adyuvante, ambas expresando el gene de la hemaglutinina de un aislamiento H5 clado 2.3.4.4 (A/Gyrfalcon/Washington/41088-6/2014 H5N8), para inmunizar los patos. Las vacunas se administraron como vacunación única a los 2 días de edad o con un programa de primovacunación y refuerzo a los 2 y 15 días de edad. A los 32 días de edad, todos los patos fueron desafiados con el virus de alta patogenicidad A/turkey/Minnesota/12582/15 H5N2 clado 2.3.4.4. Todos los patos del grupo control no vacunado y desafiado se infectaron y excretaron al virus; un pato en este grupo presentó ataxia leve y un segundo pato murió. No se observó mortalidad o signos clínicos en patos vacunados y desafiados, con la excepción de un pato que presentó ataxia leve. Ambas vacunas, independientemente de la estrategia de vacunación utilizada, fueron inmunogénicas en patos y redujeron o evitaron la diseminación del virus después del desafío. En conclusión, se logró una buena protección contra la infección por H5N2 en los patos vacunados con las vacunas evaluadas, las cuales eran homólogas al virus de desafío y las estrategias de primovacunación y refuerzo confirieron la mejor protección contra la infección.


Assuntos
Patos , Imunogenicidade da Vacina/imunologia , Vírus da Influenza A Subtipo H5N2/imunologia , Doenças das Aves Domésticas/prevenção & controle , Vacinas Sintéticas/imunologia , Animais , Vacinas contra Influenza/farmacologia , Vacinação/veterinária , Vacinas de Produtos Inativados/farmacologia
14.
Monoclon Antib Immunodiagn Immunother ; 37(6): 245-251, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30592705

RESUMO

In vivo targeting an immunogen to the CD40 receptor expressed on professional antigen-presenting cells (APCs) dramatically enhances speed, magnitude, and quality of the immune response. Our previous evaluation of this strategy in poultry was limited to immunogenicity studies using CD40-targeted synthetic peptides, which demonstrated significant antigen-specific serum IgG and tracheal IgA levels <1 week after primary administration. In this study, this antibody-guided immunization strategy was modified to permit incorporation of inactivated highly pathogenic avian influenza virions (in lieu of short synthetic peptides) as the immunogen by simply mixing a bispecific antibody complex (anti-CD40/M2e) with crude inactivated virus before injection. Adjuvated avian influenza virus (AIV) induced significant hemagglutination inhibition titers up to 6 weeks postimmunization. In efficacy studies, administration of a single vaccine dose yielded 56%-64% survival against challenge with highly pathogenic H5N1, and 100% protection was achieved upon boosting. These results represent a feasible strategy to effectively target whole inactivated influenza A virus to chicken APCs, regardless of AIV clade and without phenotyping or purifying the virus from crude allantoic fluid. The data represent proof of principle for the unique prophylactic efficacy and versatility of a CD40-targeting adjuvation strategy that can in principle also be harnessed in other poultry vaccines.


Assuntos
Anticorpos Biespecíficos/administração & dosagem , Antígenos Virais/imunologia , Antígenos CD40/imunologia , Vírus da Influenza A/imunologia , Vacinas contra Influenza/administração & dosagem , Influenza Aviária/prevenção & controle , Animais , Galinhas , Influenza Aviária/imunologia
15.
Vaccine ; 36(43): 6361-6372, 2018 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-30241684

RESUMO

Maternally-derived antibodies (MDA) provide early protection from disease, but may interfere with active immunity in young chicks. In highly pathogenic avian influenza virus (HPAIV)-enzootic countries, broiler chickens typically have MDA to Newcastle disease virus (NDV) and H5 HPAIV, and their impact on active immunity from recombinant vectored vaccines is unclear. We assessed the effectiveness of a spray-applied recombinant NDV vaccine with H5 AIV insert (rNDV-H5) and a recombinant turkey herpesvirus (HVT) vaccine with H5 AIV insert (rHVT-H5) in commercial broilers with MDA to NDV alone (MDA:AIV-NDV+) or to NDV plus AIV (MDA:AIV+NDV+) to provide protection against homologous HPAIV challenge. In Experiment 1, chicks were spray-vaccinated with rNDV-H5 at 3 weeks (3w) and challenged at 5 weeks (5w). All sham-vaccinated progeny lacked AIV antibodies and died following challenge. In rNDV-H5 vaccine groups, AIV and NDV MDA had completely declined to non-detectable levels by vaccination, enabling rNDV-H5 spray vaccine to elicit a protective AIV antibody response by 5w, with 70-78% survival and significant reduction of virus shedding compared to shams. In Experiment 2, progeny were vaccinated with rHVT-H5 and rNDV-H5 at 1 day (1d) or 3w and challenged at 5w. All sham-vaccinated progeny lacked AIV antibodies and died following challenge. In rHVT-H5(1d) vaccine groups, irrespective of rNDV-H5(3w) boost, AIV antibodies reached protective levels pre-challenge, as all progeny survived and virus shedding significantly decreased compared to shams. In contrast, rNDV-H5-vaccinated progeny had AIV and/or NDV MDA at the time of vaccination (1d and/or 3w) and failed to develop a protective immune response by 5w, resulting in 100% mortality after challenge. Our results demonstrate that MDA to AIV had minimal impact on the effectiveness of rHVT-H5, but MDA to AIV and/or NDV at the time of vaccination can prevent development of protective immunity from a primary or booster rNDV-H5 vaccine.


Assuntos
Imunidade Materno-Adquirida , Vacinas contra Influenza/imunologia , Influenza Aviária/prevenção & controle , Vírus da Doença de Newcastle/genética , Doenças das Aves Domésticas/prevenção & controle , Animais , Anticorpos Antivirais/sangue , Galinhas/imunologia , Vetores Genéticos , Glicoproteínas de Hemaglutininação de Vírus da Influenza/imunologia , Imunização Secundária , Virus da Influenza A Subtipo H5N1 , Influenza Aviária/imunologia , Doenças das Aves Domésticas/virologia , Vacinas Sintéticas/imunologia , Eliminação de Partículas Virais
16.
PLoS One ; 13(4): e0196394, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29698449

RESUMO

Previous field and experimental studies have demonstrated that heterosubtypic immunity (HSI) is a potential driver of Influenza A virus (IAV) prevalence and subtype diversity in mallards. Prior infection with IAV can reduce viral shedding during subsequent reinfection with IAV that have genetically related hemagglutinins (HA). In this experiment, we evaluated the effect of HSI conferred by an H3N8 IAV infection against increasing challenge doses of closely (H4N6) and distantly (H6N2) related IAV subtypes in mallards. Two groups of thirty 1-month-old mallards each, were inoculated with 105.9 50% embryo infectious doses (EID50) of an H3N8 virus or a mock-inoculum. One month later, groups of five birds each were challenged with increasing doses of H4N6 or H6N2 virus; age-matched, single infection control ducks were included for all challenges. Results demonstrate that naïve birds were infected after inoculation with 103 and 104 EID50 doses of the H4N6 or H6N2 virus, but not with 102 EID50 doses of either IAV. In contrast, with birds previously infected with H3N8 IAV, only one duck challenged with 104 EID50 of H4N6 IAV was shedding viral RNA at 2 days post-inoculation, and with H6N2 IAV, only birds challenged with the 104 EID50 dose were positive to virus isolation. Viral shedding in ducks infected with H6N2 IAV was reduced on days 2 and 3 post-inoculation compared to control birds. To explain the differences in the dose necessary to produce infection among H3-primed ducks challenged with H4N6 or H6N2 IAV, we mapped the amino acid sequence changes between H3 and H4 or H6 HA on predicted three-dimensional structures. Most of the sequence differences occurred between H3 and H6 at antigenic sites A, B, and D of the HA1 region. These findings demonstrate that the infectious dose necessary to infect mallards with IAV can increase as a result of HSI and that this effect is most pronounced when the HA of the viruses are genetically related.


Assuntos
Imunidade Adaptativa/fisiologia , Vírus da Influenza A/patogenicidade , Influenza Aviária/imunologia , Sequência de Aminoácidos , Animais , Anticorpos Neutralizantes/sangue , Patos , Epitopos/imunologia , Hemaglutininas/química , Vírus da Influenza A Subtipo H3N8/imunologia , Vírus da Influenza A Subtipo H3N8/patogenicidade , Vírus da Influenza A/genética , Vírus da Influenza A/imunologia , Influenza Aviária/patologia , Influenza Aviária/virologia , Estrutura Terciária de Proteína , Alinhamento de Sequência , Carga Viral , Eliminação de Partículas Virais
17.
Virology ; 518: 195-201, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29524835

RESUMO

Next-generation sequencing (NGS) technologies are a valuable tool to monitor changes in viral genomes and determine the genetic heterogeneity of viruses. In this study, NGS was applied to clinical poultry samples from Jordan to detect eleven H9N2 low pathogenic avian influenza viruses (LPAIV). All of the viruses tested belonged to Middle East A genetic group of G1 lineage. Deep sequencing demonstrated a high degree of heterogeneity of glutamine and leucine residues at position 226 in the hemagglutinin (HA) gene, which increases specificity to either avian or mammalian-type receptors. Moreover, additional amino acid changes in PB1, PA, M1, M2, and NS1 were identified among the viruses tested. Compared to single gene amplification, application of NGS for surveillance and characterization of H9N2 LPAIV provides a complete genetic profile of emerging isolates and better understanding of the potential of zoonotic transmissions to mammals.


Assuntos
Aminoácidos/genética , Variação Genética , Glicoproteínas de Hemaglutininação de Vírus da Influenza/genética , Especificidade de Hospedeiro , Vírus da Influenza A Subtipo H9N2/genética , Vírus da Influenza A Subtipo H9N2/fisiologia , Influenza Aviária/virologia , Animais , Transmissão de Doença Infecciosa , Sequenciamento de Nucleotídeos em Larga Escala , Vírus da Influenza A Subtipo H9N2/classificação , Vírus da Influenza A Subtipo H9N2/isolamento & purificação , Influenza Aviária/transmissão , Jordânia , Mamíferos , Aves Domésticas
18.
Vaccine ; 35(42): 5637-5643, 2017 10 09.
Artigo em Inglês | MEDLINE | ID: mdl-28886943

RESUMO

Highly pathogenic avian influenza virus (HPAIV) infections are frequently associated with systemic disease and high mortality in domestic poultry, particularly in chickens and turkeys. Clade 2.3.4.4 represents a genetic cluster within the Asian HPAIV H5 Goose/Guangdong lineage that has transmitted through migratory birds and spread throughout the world. In 2014, clade 2.3.4.4 strains entered the U.S. via the Pacific flyway, reassorted with local strains of the North American lineage, and produced novel HPAIV strains of the H5N1, H5N2, and H5N8 subtypes. By 2015, the H5N2 HPAIVs disseminated eastwards within the continental U.S. and Canada and infected commercial poultry, causing the largest animal health outbreak in recent history in the U.S. The outbreak was controlled by traditional mass depopulation methods, but the outbreak was of such magnitude that it led to the consideration of alternative control measures, including vaccination. In this regard, little information is available on the long-term protection of turkeys vaccinated against avian influenza. In this report, a vaccination study was carried out in turkeys using 3 prime-boost approaches with a combination of 2 different vaccines, an alphavirus-based replicon vaccine and an adjuvanted-inactivated reverse genetics vaccine. Vaccine efficacy was assessed at 6 and 16weeks of age following challenge with a prototypic novel clade 2.3.4.4 H5N2 HPAIV. All three vaccines protocols were protective with significantly reduced virus shedding and mortality after challenge at 6weeks of age. In contrast, significant variations were seen in 16-week old turkeys after challenge: priming with the alphavirus-based replicon followed by boost with the adjuvanted-inactivated vaccine conferred the best protection, whereas the alphavirus-based replicon vaccine given twice provided the least protection. Our study highlights the importance of studying not only different vaccine platforms but also vaccination strategies to maximize protection against HPAIV especially with regards to the longevity of vaccine-induced immune response.


Assuntos
Vírus da Influenza A Subtipo H5N2/imunologia , Vacinas contra Influenza/imunologia , Influenza Aviária/imunologia , Doenças das Aves Domésticas/imunologia , Perus/imunologia , Vacinação/veterinária , Animais , Canadá , Surtos de Doenças/prevenção & controle , Virus da Influenza A Subtipo H5N1/imunologia , Influenza Aviária/prevenção & controle , Aves Domésticas/imunologia , Doenças das Aves Domésticas/prevenção & controle , Estados Unidos , Vacinas de Produtos Inativados/imunologia , Eliminação de Partículas Virais/imunologia
19.
Vet Immunol Immunopathol ; 191: 74-79, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28895870

RESUMO

Between December 2014 and June 2015, North America experienced the largest recorded foreign animal disease outbreak with over 47 million poultry dead or euthanized from viral exposure to a clade 2.3.4.4 H5 highly pathogenic avian influenza (HPAI) epizootic. Soon after the epizootic began, the U.S. Department of Agriculture (USDA) began testing the efficacy of different vaccines as a possible future control strategy. The aim of these studies were to evaluate the efficacy three H5 vaccines to aid in control of HPAI in commercial turkeys. Three different vaccine technologies were evaluated for efficacy: 1) inactivated reverse genetic laboratory-generated virus encoding a clade 2.3.4.4 H5 hemagglutinin (HA) gene (rgH5), 2) recombinant turkey herpesvirus encoding a clade 2.2. H5 HA (rHVT-AI), and 3) recombinant replication-deficient alphavirus RNA particle vaccine encoding a clade 2.3.4.4 H5 HA (RP-H5). All vaccines tested significantly (P<0.01) increased survival rates between vaccinated and sham vaccinated groups of poults challenged with A/turkey/Minnesota/12582/2015 clade 2.3.4.4 H5N2 HPAI. The rgH5 vaccine had detectable serum hemagglutination inhibition (HI) antibody against the challenge virus, and significantly reduced the frequency and level of viral shedding from oropharyngeal and cloacal swabs at days 2 and 4 post-challenge. Vaccination with only rHVT-AI or RP-H5 was not 100% protective, and failed to significantly reduce viral shedding post-challenge. A combined prime and boost strategy with the rHVT-AI and RP-H5, or rHVT-AI and rgH5, was 100% protective against lethal H5N2 HPAI challenge. Results of these studies led to USDA conditional approval of commercially available recombinant vaccines for use in turkeys as a control measure for clade 2.3.4.4 H5 HPAI epizootics.


Assuntos
Vírus da Influenza A Subtipo H5N2/imunologia , Vacinas contra Influenza/uso terapêutico , Influenza Aviária/prevenção & controle , Perus/virologia , Animais , Feminino , Vírus da Influenza A Subtipo H5N2/patogenicidade , Vacinas contra Influenza/imunologia , Influenza Aviária/imunologia , Influenza Aviária/virologia , Masculino , Perus/imunologia , Vacinas de Produtos Inativados/imunologia , Vacinas de Produtos Inativados/uso terapêutico , Vacinas Sintéticas/imunologia , Vacinas Sintéticas/uso terapêutico , Eliminação de Partículas Virais/imunologia
20.
Virology ; 509: 159-166, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28646651

RESUMO

Current technologies with next generation sequencing have revolutionized metagenomics analysis of clinical samples. To achieve the non-selective amplification and recovery of low abundance genetic sequences, a simplified Sequence-Independent, Single-Primer Amplification (SISPA) technique in combination with MiSeq platform was applied to target negative- and positive-sense single-stranded RNA viral sequences. This method allowed successful sequence assembly of full or near full length avian influenza virus (AIV), infectious bronchitis virus (IBV), and Newcastle disease virus (NDV) viral genome. Moreover, SISPA analysis applied to unknown clinical cases of mixed viral infections produced genome assemblies comprising 98% NDV and 99% of IBV genomes. Complete or near complete virus genome sequence was obtained with titers at or above 104.5 EID50/ml (50% embryo infectious dose), and virus identification could be detected with titers at or above 103 EID50/ml. Taken together, these studies demonstrate a simple template enrichment protocol for rapid detection and accurate characterization of avian RNA viruses.


Assuntos
Primers do DNA/genética , Vírus da Bronquite Infecciosa/isolamento & purificação , Vírus da Influenza A/isolamento & purificação , Metagenômica/métodos , Vírus da Doença de Newcastle/isolamento & purificação , Técnicas de Amplificação de Ácido Nucleico/métodos , Infecções por Vírus de RNA/veterinária , Animais , Vírus da Bronquite Infecciosa/genética , Vírus da Influenza A/genética , Vírus da Doença de Newcastle/genética , Aves Domésticas , Doenças das Aves Domésticas/virologia , Infecções por Vírus de RNA/virologia , Análise de Sequência de DNA/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...